Course Outline

Module 1. Introduction to Hadoop

  • The Hadoop Distributed File System (HDFS)
  • The Read Path and The Write Path
  • Managing Filesystem Metadata
  • The Namenode and the Datanode
  • The Namenode High Availability
  • Namenode Federation
  • The Command-Line Tools
  • Understanding REST Support

Module 2. Introduction to MapReduce

  • Analyzing the Data with Hadoop
  • Map and Reduce Pattern
  • Java MapReduce
  • Scaling Out
  • Data Flow
  • Developing Combiner Functions
  • Running a Distributed MapReduce Job

Module 3. Planning a Hadoop Cluster

  • Picking a Distribution and Version of Hadoop
  • Versions and Features
  • Hardware Selection
  • Master and Worker Hardware Selection
  • Cluster Sizing
  • Operating System Selection and Preparation
  • Deployment Layout
  • Setting up Users, Groups, and Privileges
  • Disk Configuration
  • Network Design

Module 4. Installation and Configuration

  • Installing Hadoop
  • Configuration: An Overview
  • The Hadoop XML Configuration Files
  • Environment Variables and Shell Scripts
  • Logging Configuration
  • Managing HDFS
  • Optimization and Tuning
  • Formatting the Namenode
  • Creating a /tmp Directory
  • Thinking Namenode High Availability
  • The Fencing Options
  • Automatic Failover Configuration
  • Format and Bootstrap the Namenodes
  • Namenode Federation

Module 5. Understanding Hadoop I/O

  • Data Integrity in HDFS  
  • Understanding Codecs
  • Compression and Input Splits
  • Using Compression in MapReduce
  • The Serialization mechanism
  • File-Based Data Structures
  • The SequenceFile format
  • Other File Formats and Column-Oriented Formats

Module 6. Developing a MapReduce Application

  • The Configuration API 
  • Setting Up the Development Environment
  • Managing Configuration
  • GenericOptionsParser, Tool, and ToolRunner
  • Writing a Unit Test with MRUnit
  • The Mapper and Reducer
  • Running Locally on Test Data 
  • Testing the Driver
  • Running on a Cluster
  • Packaging and Launching a Job
  • The MapReduce Web UI
  • Tuning a Job

Module 7. Identity, Authentication, and Authorization

  • Managing Identity
  • Kerberos and Hadoop
  • Understanding Authorization

Module 8. Resource Management

  • What Is Resource Management?
  • HDFS Quotas
  • MapReduce Schedulers
  • Anatomy of a YARN Application Run
  • Resource Requests
  • Application Lifespan
  • YARN Compared to MapReduce 1
  • Scheduling in YARN
  • Scheduler Options
  • Capacity Scheduler Configuration
  • Fair Scheduler Configuration
  • Delay Scheduling
  • Dominant Resource Fairness

Module 9. MapReduce Types and Formats

  • MapReduce Types
  • The Default MapReduce Job
  • Defining the Input Formats
  • Managing Input Splits and Records
  • Text Input and Binary Input
  • Managing Multiple Inputs
  • Database Input (and Output)
  • Output Formats
  • Text Output and Binary Output
  • Managing Multiple Outputs
  • The Database Output

Module 10. Using MapReduce Features

  • Using Counters
  • Reading Built-in Counters
  • User-Defined Java Counters
  • Understanding Sorting
  • Using the Distributed Cache

Module 11. Cluster Maintenance and Troubleshooting

  • Managing Hadoop Processes
  • Starting and Stopping Processes with Init Scripts
  • Starting and Stopping Processes Manually
  • HDFS Maintenance Tasks
  • Adding a Datanode
  • Decommissioning a Datanode
  • Checking Filesystem Integrity with fsck
  • Balancing HDFS Block Data
  • Dealing with a Failed Disk
  • MapReduce Maintenance Tasks 
  • Killing a MapReduce Job
  • Killing a MapReduce Task
  • Managing Resource Exhaustion

Module 12. Monitoring

  • The available Hadoop Metrics
  • The role of SNMP
  • Health Monitoring
  • Host-Level Checks
  • HDFS Checks
  • MapReduce Checks

Module 13. Backup and Recovery

  • Data Backup
  • Distributed Copy (distcp)
  • Parallel Data Ingestion
  • Namenode Metadata
  21 Hours
 

Testimonials

Related Courses

Apache Ambari: Efficiently Manage Hadoop Clusters

 21 hours

Apache Ambari is an open-source management platform for provisioning, managing, monitoring and securing Apache Hadoop clusters. In this instructor-led live training participants will learn the management tools and practices provided by Ambari to

Administrator Training for Apache Hadoop

 35 hours

Audience: The course is intended for IT specialists looking for a solution to store and process large data sets in a distributed system environment Goal: Deep knowledge on Hadoop cluster

Apache Hadoop: Manipulation and Transformation of Data Performance

 21 hours

This course is intended for developers, architects, data scientists or any profile that requires access to data either intensively or on a regular basis. The major focus of the course is data manipulation and transformation. Among the tools

Hadoop Administration

 21 hours

The course is dedicated to IT specialists that are looking for a solution to store and process large data sets in distributed system environment Course goal: Getting knowledge regarding Hadoop cluster

Hadoop For Administrators

 21 hours

Apache Hadoop is the most popular framework for processing Big Data on clusters of servers. In this three (optionally, four) days course, attendees will learn about the business benefits and use cases for Hadoop and its ecosystem, how to plan

Hadoop for Business Analysts

 21 hours

Apache Hadoop is the most popular framework for processing Big Data. Hadoop provides rich and deep analytics capability, and it is making in-roads in to tradional BI analytics world. This course will introduce an analyst to the core components of

Hadoop for Developers (4 days)

 28 hours

Apache Hadoop is the most popular framework for processing Big Data on clusters of servers. This course will introduce a developer to various components (HDFS, MapReduce, Pig, Hive and HBase) Hadoop

Advanced Hadoop for Developers

 21 hours

Apache Hadoop is one of the most popular frameworks for processing Big Data on clusters of servers. This course delves into data management in HDFS, advanced Pig, Hive, and HBase.  These advanced programming techniques will be beneficial to

Hadoop for Developers and Administrators

 21 hours

Hadoop is the most popular Big Data processing framework.

Hadoop Administration on MapR

 28 hours

Audience: This course is intended to demystify big data/hadoop technology and to show it is not difficult to understand.

HBase for Developers

 21 hours

This course introduces HBase – a NoSQL store on top of Hadoop.  The course is intended for developers who will be using HBase to develop applications,  and administrators who will manage HBase clusters. We will walk a developer

Hortonworks Data Platform (HDP) for Administrators

 21 hours

Hortonworks Data Platform (HDP) is an open-source Apache Hadoop support platform that provides a stable foundation for developing big data solutions on the Apache Hadoop ecosystem. This instructor-led, live training (online or onsite) introduces

Data Analysis with Hive/HiveQL

 7 hours

This course covers how to use Hive SQL language (AKA: Hive HQL, SQL on Hive, HiveQL) for people who extract data from Hive

Impala for Business Intelligence

 21 hours

Cloudera Impala is an open source massively parallel processing (MPP) SQL query engine for Apache Hadoop clusters. Impala enables users to issue low-latency SQL queries to data stored in Hadoop Distributed File System and Apache

Apache Avro: Data Serialization for Distributed Applications

 14 hours

Audience Developers Format of the Course Lectures, hands-on practice, small tests along the way to gauge understanding