Course Outline

Day 1:

  • Introduction

Module 1: KNIME Server:

Collaboration - Connecting and Deploying Items to KNIME Server from KNIME Analytics Platform

  • How to Connect to KNIME Server
  • Permission Settings on KNIME Server

Module 2: KNIME Server: Automation & Deployment

Automation and Deployment - Remote Execution and KNIME WebPortal

  • Remote Execution on KNIME Server
  • KNIME Remote Workflow Editor
  • KNIME WebPortal

Day 2:

Module 3: KNIME Server: Management

Management - Versioning and Workflow Difference

  • Versioning
  • Workflow Comparison
  • Node Comparison

Module 4: Overview of KNIME Analytics Platform

  • Controlling the model flow
  • Model deployment on KNIME Server
  • Test Scenarios between KNIME AP & Server
  • Summary and Conclusion

Requirements

  • A basic understanding of making sense of the data.
  • Experience with fundamental data processing.

Audience

  • data science managers
  • model administrators
  • data engineers
  • data analysts
  • data scientists
  14 Hours
 

Testimonials

Related Courses

Kaggle

  14 hours

Accelerating Python Pandas Workflows with Modin

  14 hours

GPU Data Science with NVIDIA RAPIDS

  14 hours

Anaconda Ecosystem for Data Scientists

  14 hours

KNIME Analytics Platform for BI

  21 hours

KNIME with Python and R for Machine Learning

  14 hours

Data Science with KNIME Analytics Platform

  21 hours

Big Data Business Intelligence for Telecom and Communication Service Providers

  35 hours

Data Science for Big Data Analytics

  35 hours

Data Science Programme

  245 hours

MATLAB Fundamentals, Data Science & Report Generation

  35 hours

Jupyter for Data Science Teams

  7 hours

F# for Data Science

  21 hours

Python Programming for Finance

  35 hours

Data Science essential for Marketing/Sales professionals

  21 hours