NoSQL Training Courses

NoSQL Training

Not Only SQL Databases, not relational databases courses

Client Testimonials

MongoDB for Administrators

monitoring

Ling Xiao - The Globe and Mail

MongoDB for Administrators

Good content and excercises

Richard Smallwood - PayPoint Network Limited

MongoDB for Developers

open mind and communication

Oleksiy Deliyev - Insight Enterprises

MongoDB for Developers

super athmosphere, working with mongo shell

Jan Sturm - AVL List GmbH

MongoDB for Administrators

The structure and pace of the class was great.

David Lacy - Availity

MongoDB for Administrators

The depth of the Mongo db training was explored from basic to advanced, I felt it was a little too much to squeeze into 2 days but I did get exposure to all aspects of Mongo db.

Bay Sayarath - Availity

MongoDB for Administrators

Relevant to need.

Damon Grube - Availity

MongoDB for Administrators

Most of the hands on stuff was good.

Andrew Bauer - Availity

MongoDB for Administrators

I had attended a different training given by the mongo team. I like this one a lot better in terms of simplicity and course material. Thanks for helping us out.

Patience, clear and to the point.

V. Rai - New Jersey

MongoDB for Developers

He (the trainer) used good real world examples and pitched the exercises at the right level

Martin Davies- Capgemini UK Plc

NoSQL Course Outlines

Code Name Duration Overview
berkeleydb Berkeley DB for developers 21 hours Berkeley DB (BDB) is a software library intended to provide a high-performance embedded database for key/value data. Berkeley DB is written in C with API bindings for C++, C#, Java, Perl, PHP, Python, Ruby, Smalltalk, Tcl, and many other programming languages. Berkeley DB is not a relational database.[1] This course will introduce the architecture and capabilities of Berkeley DB and walk participants through the development of their own sample application using Berkeley DB. Audience     Application developers     Software engineers     Technical consultants Format of the course     Part lecture, part discussion, hands-on development and implementation, tests to gauge understanding Introduction Installing Berkeley DB Configuring Berkeley DB Database operations Working with the Berkeley DB API Creating transactional applications in Berkeley DB Creating concurrent data stores Cursor operations Querying the database Working with indexes Replicating your application Berkeley DB utilities Building, configuring and updating Berkeley DB Backup and recovery Tuning Berkeley DB
accumulo Apache Accumulo: Building highly scalable big data applications 21 hours Apache Accumulo is a sorted, distributed key/value store that provides robust, scalable data storage and retrieval. It is based on the design of Google's BigTable and is powered by Apache Hadoop, Apache Zookeeper, and Apache Thrift.   This courses covers the working principles behind Accumulo and walks participants through the development of a sample application on Apache Accumulo. Audience     Application developers     Software engineers     Technical consultants Format of the course     Part lecture, part discussion, hands-on development and implementation, occasional tests to gauge understanding Introduction Installing Accumulo Configuring Accumulo Understanding Accumulo's data model, architecture, and components Working with the shell Database operations Configuring your tables Accumulo iterators Developing an application in Accumulo Securing your application Reading and writing secondary indexes Working with Mapreduce, Spark, and Thrift Proxy Testing your application Troubleshooting Deploying your application Accumulo Administrative tasks
voldemort Voldemort: Setting up a key-value distributed data store 14 hours Voldemort is an open-source distributed data store that is designed as a key-value store.  It is used at LinkedIn by numerous critical services powering a large portion of the site. This course will introduce the architecture and capabilities of Voldomort and walk participants through the setup and application of a key-value distributed data store. Audience     Software developers     System administrators     DevOps engineers Format of the course     Part lecture, part discussion, heavy hands-on practice, occasional tests to gauge understanding Introduction Understanding distributed key-value storage systems Voldomort data model and architecture Downloading and configuration Command line operations Clients and servers Working with Hadoop Configuring build and push jobs Rebalancing a Voldemort instance Serving Large-scale Batch Computed Data Using the Admin Tool Performance tuning
BigData_ A practical introduction to Data Analysis and Big Data 28 hours Participants who complete this training will gain a practical, real-world understanding of Big Data and its related technologies, methodologies and tools. Participants will have the opportunity to put this knowledge into practice through hands-on exercises. Group interaction and instructor feedback make up an important component of the class. The course starts with an introduction to elemental concepts of Big Data, then progresses into the programming languages and methodologies used to perform Data Analysis. Finally, we discuss the tools and infrastructure that enable Big Data storage, Distributed Processing, and Scalability. Audience Developers / programmers IT consultants Format of the course     Part lecture, part discussion, heavy hands-on practice and implementation, occasional quizing to measure progress. Introduction to Data Analysis and Big Data What makes Big Data "big"? Velocity, Volume, Variety, Veracity (VVVV) Limits to traditional Data Processing Distributed Processing Statistical Analysis Types of Machine Learning Analysis Data Visualization Distributed Processing MapReduce Languages used for Data Analysis R language (crash course) Python (crash course) Approaches to Data Analysis Statistical Analysis Time Series analysis Forecasting with Correlation and Regression models Inferential Statistics (estimating) Descriptive Statistics in Big Data sets (e.g. calculating mean) Machine Learning Supervised vs unsupervised learning Classification and clustering Estimating cost of specific methods Filter Natural Language Processing Processing text Understaing meaning of the text Automatic text generation Sentiment/Topic Analysis Computer Vision Big Data infrastructure Data Storage Relational databases (SQL) MySQL Postgres Oracle Non-relational databases (NoSQL) Cassandra MongoDB Neo4js Understanding the nuances: hierarchical, object-oriented, document-oriented, graph-oriented, etc. Distributed File Systems HDFS Search Engines ElasticSearch Distributed Processing Spark Machine Learning libraries: MLlib Spark SQL Scalability Public cloud AWS, Google, Aliyun, etc. Private cloud OpenStack, Cloud Foundry, etc. Auto-scalability Choosing right solution for the problem  
mongodbadmin MongoDB for Administrators 14 hours This course covers everything a database administrator needs to know to successfully deploy and maintain MongoDB databases. Diagnosing performance issues, importing and exporting data, and establishing the proper backup and restore routines, overview of the MongoDB CRUD API, the command shell, and the drivers. are also covered. The audience of this course include people who want to: Understand MongoDB from a developer's perspective, including its command shell, query API, and driver tools. Deploy MongoDB in all its configurations - as a single server, with master/slave replication, as a replica set, and as a sharded cluster. Evaluate applications and choose hardware appropriately. Monitor MongoDB instances and integrate with standard monitoring software (Munin, Nagios, etc.) Plan for backups and manage large data imports and exports. Troubleshoot the most common developer issues and failure scenarios. Each delegate will need to perform a series of practical exercises. MongoDB Architectural Overview Origin, design goals, key features Process structure (mongos, mongod, config servers) Directory / file structure Working with the MongoDB Shell Documents and data types CRUD (Inserts, queries, updates, deletes) System commands Single-server Configuration and Deployment Configuration files Data files and allocation Log files Hardware and file-system recommendations Security Built-in authentication Recommendations for secure deployment Monitoring MongoDB mongostat Analyzing memory and IO performance Integration with monitoring tools: Munin / Cacti / Nagios MongoDB's web console Indexing and Query Optimization Managing indexes and MongoDB indexing internals Single / Compound / Geo indexes Identifying sub-optimal queries. Using the query profiler. Introduction to drivers (Java/Python/Ruby/PHP/Perl) How the drivers and shell communicate with MongoDB BSON and the MongoDB Wire Protocol Troubleshooting application connections Intro to Read and Write scalability Replication and Durability Master-slave replication Replica sets Using write concern for durability Handling replication failures Auto-Sharding How sharding works Setting up a MongoDB shard cluster Choosing a shard key Sharding and indexes Sharding and Replica Set Topologies Administering a sharded cluster Shard / Chunk Migration Backup and Restore Plans Filesystem-based strategies mongodump / mongorestore rsync mongoimport / mongoexport
mongodbdev MongoDB for Developers 14 hours This course covers everything a database developer needs to know to successfully develop applications using MongoDB. Manipulating Documents Query Insert Update Remove Upsert Removing databases, fields and others Document Structure Datatypes References ID Keys Embedded sub-documents Tree structures Tailable Cursor Two Phase Commits Auto-incrementing Sequence field Aggregation  Distinct Aggregation Pipelines Map-reduce Indexes Default _id Single Field Compound Index Multikey Index Geospatial Index Hashed Index Unique Sparse
hadoopmapr Hadoop Administration on MapR 28 hours Audience: This course is intended to demystify big data/hadoop technology and to show it is not difficult to understand. Big Data Overview: What is Big Data Why Big Data is gaining popularity Big Data Case Studies Big Data Characteristics Solutions to work on Big Data. Hadoop & Its components: What is Hadoop and what are its components. Hadoop Architecture and its characteristics of Data it can handle /Process. Brief on Hadoop History, companies using it and why they have started using it. Hadoop Frame work & its components- explained in detail. What is HDFS and Reads -Writes to Hadoop Distributed File System. How to Setup Hadoop Cluster in different modes- Stand- alone/Pseudo/Multi Node cluster. (This includes setting up a Hadoop cluster in VirtualBox/KVM/VMware, Network configurations that need to be carefully looked into, running Hadoop Daemons and testing the cluster). What is Map Reduce frame work and how it works. Running Map Reduce jobs on Hadoop cluster. Understanding Replication , Mirroring and Rack awareness in context of Hadoop clusters. Hadoop Cluster Planning: How to plan your hadoop cluster. Understanding hardware-software to plan your hadoop cluster. Understanding workloads and planning cluster to avoid failures and perform optimum. What is MapR and why MapR : Overview of MapR and its architecture. Understanding & working of MapR Control System, MapR Volumes , snapshots & Mirrors. Planning a cluster in context of MapR. Comparison of MapR with other distributions and Apache Hadoop. MapR installation and cluster deployment. Cluster Setup & Administration: Managing services, nodes ,snapshots, mirror volumes and remote clusters. Understanding and managing Nodes. Understanding of Hadoop components, Installing Hadoop components alongside MapR Services. Accessing Data on cluster including via NFS Managing services & nodes. Managing data by using volumes, managing users and groups, managing & assigning roles to nodes, commissioning decommissioning of nodes, cluster administration and performance monitoring, configuring/ analyzing and monitoring metrics to monitor performance, configuring and administering MapR security. Understanding and working with M7- Native storage for MapR tables. Cluster configuration and tuning for optimum performance. Cluster upgrade and integration with other setups: Upgrading software version of MapR and types of upgrade. Configuring Mapr cluster to access HDFS cluster. Setting up MapR cluster on Amazon Elastic Mapreduce. All the above topics include Demonstrations and practice sessions for learners to have hands on experience of the technology.
mariadbdev MariaDB 10 Developer Course 28 hours Created DBAs, Administrators and developers who are interested with getting involved in MariaDB 10 based on Linux system. Even beginners, who have the basic skill and knowledge on Linux, can catch up with this course just if you follow the instructor's lab and explanation in detail. This course is intended to practice enough Database Concept and SQL and to show it is very easy to understand how to use SQL and manage MariaDB on Linux system. This course will be delivered to audience with 40% lectures, 50% labs and 10% Q&A. This five-day course strongly emphasizes lab-based activities After this course, you can apply the knowledge, which you obtained through this course, to the other database systems such as MySQL, Oracle Database, MSSQL Server and PostgreSQL as well. It can be deliver on any distribution (Ubuntu, CentOS are commonly used) This course covers these kinds of topics: Chapter 00 MariaDB 10 Developer Course Introduction Chapter 01 MariaDB 10 Introduction Chapter 02 Startup MariaDB 10 Chapter 03 MariaDB Tools - Command & GUI Chapter 04 Retrieving Data using SQL Chapter 05 Filtering Data using SQL Chapter 06 Summarizing, Grouping & Combining Chapter 07 Database, Table & Indexes Chapter 08 Inserting, Updating & Deleting Data Chapter 09 Table Joins Chapter 10 Subqueries Chapter 11 Views Chapter 12 Stored Procedures Chapter 13 Triggers Chapter 14 MariaDB Datatypes Chapter 15 Transaction Processing Chapter 16 MariaDB User Management Chapter 17 MariaDB Client Tools
bigdatastore Big Data Storage Solution - NoSQL 14 hours When traditional storage technologies don't handle the amount of data you need to store there are hundereds of alternatives. This course try to guide the participants what are alternatives for storing and analyzing Big Data and what are theirs pros and cons. This course is mostly focused on discussion and presentation of solutions, though hands-on exercises are available on demand. Limits of Traditional Technologies SQL databases Redundancy: replicas and clusters Constraints Speed Overview of database types Object Databases Document Store Cloud Databases Wide Column Store Multidimensional Databases Multivalue Databases Streaming and Time Series Databases Multimodel Databases Graph Databases Key Value XML Databases Distribute file systems Popular NoSQL Databases MongoDB Cassandra Apache Hadoop Apache Spark other solutions NewSQL Overview of available solutions Performance Inconsitencies Document Storage/Search Optimized Solr/Lucene/Elasticsearch other solutions
hbasedev HBase for Developers 21 hours This course introduces HBase – a NoSQL store on top of Hadoop.  The course is intended for developers who will be using HBase to develop applications,  and administrators who will manage HBase clusters. We will walk a developer through HBase architecture and data modelling and application development on HBase. It will also discuss using MapReduce with HBase, and some administration topics, related to performance optimization. The course  is very  hands-on with lots of lab exercises. Duration : 3 days Audience : Developers  & Administrators Section 1: Introduction to Big Data & NoSQL Big Data ecosystem NoSQL overview CAP theorem When is NoSQL appropriate Columnar storage HBase and NoSQL Section 2 : HBase Intro Concepts and Design Architecture (HMaster and Region Server) Data integrity HBase ecosystem Lab : Exploring HBase Section 3 : HBase Data model Namespaces, Tables and Regions Rows, columns, column families, versions HBase Shell and Admin commands Lab : HBase Shell Section 3 : Accessing HBase using Java API Introduction to Java API Read / Write path Time Series data Scans Map Reduce Filters Counters Co-processors Labs (multiple) : Using HBase Java API to implement  time series , Map Reduce, Filters and counters. Section 4 : HBase schema Design : Group session students are presented with real world use cases students work in groups to come up with design solutions discuss / critique and learn from multiple designs Labs : implement a scenario in HBase Section 5 : HBase Internals Understanding HBase under the hood Memfile / HFile / WAL HDFS storage Compactions Splits Bloom Filters Caches Diagnostics Section 6 : HBase installation and configuration hardware selection install methods common configurations Lab : installing HBase Section 7 : HBase eco-system developing applications using HBase interacting with other Hadoop stack (MapReduce, Pig, Hive) frameworks around HBase advanced concepts (co-processors) Labs : writing HBase applications Section 8 : Monitoring And Best Practices monitoring tools and practices optimizing HBase HBase in the cloud real world use cases of HBase Labs : checking HBase vitals
aerosdev Aerospike for Developers 14 hours This course covers everything a database developer needs to know to successfully develop applications using Aerospike.Data Management Data Model Primary Index Secondary Index Hybrid Storage Distribution Data Distribution Consistency Guarantees Clustering Cross Data-Center Replication Rack Awareness Client Architecture ACID Key-Value Store Single Record Batch Scans Policies Data Types Lists Maps Geospatial Large Data Types Query User-Defined Functions Record UDF Stream UDF Aggregation Security (Enterprise Edition only) Known Limitations
neo4j Beyond the relational database: neo4j 21 hours Relational, table-based databases such as Oracle and MySQL have long been the standard for organizing and storing data. However, the growing size and fluidity of data have made it difficult for these traditional systems to efficiently execute highly complex queries on the data. Imagine replacing rows-and-columns-based data storage with object-based data storage, whereby entities (e.g., a person) could be stored as data nodes, then easily queried on the basis of their vast, multi-linear relationship with other nodes. And imagine querying these connections and their associated objects and properties using a compact syntax, up to 20 times lighter than SQL? This is what graph databases, such as neo4j offer. In this hands-on course, we will set up a live project and put into practice the skills to model, manage and access your data. We contrast and compare graph databases with SQL-based databases as well as other NoSQL databases and clarify when and where it makes sense to implement each within your infrastructure. Audience Database administrators (DBAs) Data analysts Developers System Administrators DevOps engineers Business Analysts CTOs CIOs Format of the course Heavy emphasis on hands-on practice. Most of the concepts are learned through samples, exercises and hands-on development.   Getting started with neo4j neo4j vs relational databases neo4j vs other NoSQL databases Using neo4j to solve real world problems Installing neo4j Data modeling with neo4j Mapping white-board diagrams and mind maps to neo4j Working with nodes Creating, changing and deleting nodes Defining node properties Node relationships Creating and deleting relationships Bi-directional relationships Querying your data with Cypher Querying your data based on relationships MATCH, RETURN, WHERE, REMOVE, MERGE, etc. Setting indexes and constraints Working with the REST API REST operations on nodes REST operations on relationships REST operations on indexes and constraints Accessing the core API for application development Working with NET, Java, Javascript, Python APIs Closing remarks  
scylladb Scylla database 21 hours Scylla is an open-source distributed NoSQL data store. It is compatible with Apache Cassandra but performs at significantly higher throughputs and lower latencies. In this course, participants will learn about Scylla's features and architecture while obtaining practical experience with setting up, administering, monitoring, and troubleshooting Scylla.   Audience     Database administrators     Developers     System Engineers Format of the course     The course is interactive and includes discussions of the principles and approaches for deploying and managing Scylla distributed databases and clusters. The course includes a heavy component of hands-on exercises and practice. Introduction to Scylla Installing and running Scylla Understanding distributed databases Scylla's data model and architecture Working with CQL (Cassandra Query Language) Setting up a Scylla cluster Scylla tools Database administration Troubleshooting Scylla

Upcoming Courses

CourseCourse DateCourse Price [Remote / Classroom]
MongoDB for Developers - DubaiWed, 2017-07-12 09:302600USD / 4500USD

Other regions

Weekend NoSQL courses, Evening NoSQL training, NoSQL boot camp, NoSQL instructor-led , NoSQL instructor, NoSQL one on one training , NoSQL training courses, Evening NoSQL courses, NoSQL coaching, NoSQL on-site, NoSQL trainer ,Weekend NoSQL training, NoSQL private courses

Course Discounts

Course Venue Course Date Course Price [Remote / Classroom]
Statistical Thinking for Decision Makers Dubai Sun, 2017-07-09 09:30 1287USD / 2537USD
Programming with Big Data in R Jeddah Mon, 2017-07-10 09:30 3510USD / 7610USD
Data Mining with R Jeddah Tue, 2017-07-18 09:30 2340USD / 5340USD
GlassFish Administration Dubai Sun, 2017-08-13 09:30 3510USD / 6060USD
Introduction to R Dubai Tue, 2017-08-29 09:30 3510USD / 6060USD
Data Mining Dubai Mon, 2017-10-23 09:30 4725USD / 7275USD
Cloud Computing Overview Dubai Thu, 2017-11-09 09:30 1170USD / 2420USD

Course Discounts Newsletter

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

Some of our clients