Course Outline

Module 1: Course Introduction

  • Course Introduction, Agenda and Overview

Module 2: Developer Review & Join Profiling

  • A quick review of Informatica Developer
  • Use Enterprise Discovery to create Join Profiles
  • Lab: Perform Join Profiling using an Enterprise Discovery Profile

Module 3: Standardizing and Classifying Data

  • Review Standardization Techniques
  • Build, refine and apply a Classifier Model
  • Labs: Create, refine and apply Classifier Model

Module 4: Advanced Parsing Techniques

  • What is Probabilistic Labeling and Parsing?
  • Build, refine and apply a Probabilistic Model
  • Additional Parsing Techniques:
    • Build regular expressions
  • Labs: Build, refine and apply a Probabilistic Model
  • Lab: Review an example of Advanced Parsing 
  • Lab: Generate and test Regular Expressions

Module 5: Grouping & Matching Data

  • Additional Grouping Techniques
    • Using Composite keys
  • Advanced Matching Techniques
    • Matched pairs outputs
    • Working with Match Mapplets
    • Manipulating the matched data using the Driver ID
    • Perform Dual Matching
  • Lab: Create a Match mapping using Matched Pairs 
  • Lab: Create and update a Match Mapplet
  • Lab: Manipulating Matched Data using the Driver ID
  • Lab: Perform Dual Matching using a Master Dataset

Module 6: Automatically Associate and Consolidate Matched Data

  • Overview of the Consolidation Process
  • Use the Consolidation Transformation to consolidate matched data.
  • Use the Association Transformation to link matched data ahead of Consolidation
  • Lab: Automatically Consolidate matched data
  • Lab: Perform multi-criteria Matching, Association and Consolidation.

Module 7: Task and Workflow Management

  • Additional Task and Workflow functionality:
    • Permission settings for data access and editing
    • Notifications including Human Task Notification Variables
    • Setting Timeouts
    • Reviewing Tasks
    • Configuring Workflow Recovery
  • Lab: Update the Exception Workflow
  • Lab: Review the Consolidation Workflow

Module 8: Processing Updated Exception and Cluster Data

  • How to process updated exception records
  • How to process consolidated records
  • Fields of Interest
  • Lab: Create a mapping to process updated exception data
  • Lab: Create a mapping to process consolidated data
  • Lab: Update and deploy Exception and Cluster Workflows

Module 9: Analyst Tasks

  • Update exception and duplicate records in Informatica Analyst
  • Lab: Update records and push the Tasks through the Exception Process
  • Lab: Update records and push the Tasks through the Consolidation Process

Module 10: Parameterization

  • Explain the difference between System and User defined parameters
  • Use Parameters in Data Quality mappings.
  • Lab: Create a parameterized mapping
  • Lab: Build and deploy an Application
  • Lab: Create and execute parameter files

Module 11: Performance tips and tricks

  • General Installation and Memory Information
  • DQ Component Configuration
    • Service Settings
  • DQ Transformations
    • Configuration Settings

Module 12: Optional - Data Quality at work

  • Learn how Data Quality has been implemented in different projects

Module 13: CRM and Dashboard and Reporting Templates

  • Review the CRM and Dashboard and Reporting Templates that are available
  • Lab: Review the CRM Template

Requirements

  • Data Quality: Data Quality Management for Developers
  21 Hours
 

Testimonials

Related Courses

Data Management

  35 hours

DSpace

  21 hours

MarkLogic Server

  14 hours

MarkLogic Data Hub

  14 hours

Data Quality: Data Quality Management for Developers

  28 hours

Certified Data Management Professional (CDMP)

  35 hours

Queue Data Structure

  7 hours

DMBK3: Data Quality Management

  21 hours

Pentaho Data Integration Fundamentals

  21 hours

Pentaho Open Source BI Suite Community Edition (CE)

  28 hours

KNIME Analytics Platform for BI

  21 hours

Data Engineering Integration for Developers

  21 hours

Sensor Fusion Algorithms

  14 hours

Talend Open Studio for ESB

  21 hours

Talend Big Data Integration

  28 hours