Course Outline

Day 1

  1. Data Science
  2. Data Science Team Composition (Data Scientist, Data Engineer, Data Visualizer, Process Owner)
  3. Business Intelligence
    1. Types of Business Intelligence
    2. Developing Business Intelligence Tools
    3. Business Intelligence and the Data Visualization
  4. Data Visualization
    1. Importance of Data Visualization
    2. The Visual Data Presentation
    3. The Data Visualization Tools (infographics, dials and gauges, geographic maps, sparklines, heat maps, and detailed bar, pie and fever charts)
    4. Painting by Numbers and Playing with Colors in Making Visual Stories
  5. Activity

 

Day 2

  1. Data Visualization in Python Programming
    1. Data Science with Python
    2. Review on Python Fundamentals
  1. Variables and Data Types (str, numeric, sequence, mapping, set types, Boolean, binary, casting)
  2. Operators, Lists, Tuples. Sets, Dictionaries
  3. Conditional Statements
  4. Functions, Lambda, Arrays, Classes, Objects, Inheritance, Iterators
  5. Scope, Modules, Dates, JSON, RegEx, PIP
  6. Try / Except, Command Input, String Formatting
  7. File Handling
  1. Activity

 

Day 3

  1. Python and MySQL
  1. Creating Database and Table
  2. Manipulating Database (Insert, Select, Update, Delete, Where Statement, Order by)
  3. Drop Table
  4. Limit
  5. Joining Tables
  6. Removing List Duplicates
  7. Reverse a String
  1. Data Visualization with Python and MySQL
    1. Using Matplotlib (Basic Plotting)
    2. Dictionaries and Pandas
    3. Logic, Control Flow and Filtering
    4. Manipulating Graphs Properties (Font, Size, Color Scheme)
  2. Activity

 

Day 4

  1. Plotting Data in Different Graph Format
    • Histogram
    • Line
    • Bar
    • Box Plot
    • Pie Chart
    • Donut
    • Scatter Plot
    • Radar
    • Area
    • 2D / 3D Density Plot
    • Dendogram
    • Map (Bubble, Heat)
    • Stacked Chart
    • Venn Diagram
    • Seaborn
  2. Activity

Day 5

  1. Data Visualization with Python and MySQL
    1. Group Work: Create a Top Management Data Visualization Presentation Using ITDI Local ULIMS Data
    2. Presentation of Output

Requirements

  • An understanding of Data Structure.
  • Experience with Programming.

Audience

  • Programmers
  • Data Scientist
  • Engineers
  35 Hours
 

Testimonials

Related Courses

Anaconda Ecosystem for Data Scientists

  14 hours

Scaling Data Analysis with Python and Dask

  14 hours

Data Analysis with Python, Pandas, and Numpy

  14 hours

Accelerating Python Pandas Workflows with Modin

  14 hours

Machine Learning with Python and Pandas

  14 hours

FARM (FastAPI, React, and MongoDB) Full Stack Development

  14 hours

Developing APIs with Python and FastAPI

  14 hours

Web application development with Flask

  14 hours

Advanced Flask

  14 hours

Build REST APIs with Python and Flask

  14 hours

Kaggle

  14 hours

Game Development with PyGame

  7 hours

GPU Data Science with NVIDIA RAPIDS

  14 hours

Scientific Computing with Python SciPy

  7 hours