Course Outline


SMACK Stack Overview

  • What is Apache Spark? Apache Spark features
  • What is Apache Mesos? Apache Mesos features
  • What is Apache Akka? Apache Akka features
  • What is Apache Cassandra? Apache Cassandra features
  • What is Apache Kafka? Apache Kafka features

Scala Language

  • Scala syntax and structure
  • Scala control flow

Preparing the Development Environment

  • Installing and configuring the SMACK stack
  • Installing and configuring Docker

Apache Akka

  • Using actors

Apache Cassandra

  • Creating a database for read operations
  • Working with backups and recovery


  • Creating a stream
  • Building an Akka application
  • Storing data with Cassandra
  • Reviewing connectors

Apache Kafka

  • Working with clusters
  • Creating, publishing, and consuming messages

Apache Mesos

  • Allocating resources
  • Running clusters
  • Working with Apache Aurora and Docker
  • Running services and jobs
  • Deploying Spark, Cassandra, and Kafka on Mesos

Apache Spark

  • Managing data flows
  • Working with RDDs and dataframes
  • Performing data analysis


  • Handling failure of services and errors

Summary and Conclusion


  • An understanding of data processing systems


  • Data Scientists
  14 Hours


Related Courses


  14 hours

Accelerating Python Pandas Workflows with Modin

  14 hours

GPU Data Science with NVIDIA RAPIDS

  14 hours

Anaconda Ecosystem for Data Scientists

  14 hours

Python and Spark for Big Data (PySpark)

  21 hours

Introduction to Graph Computing

  28 hours

Apache Spark MLlib

  35 hours

Artificial Intelligence - the most applied stuff - Data Analysis + Distributed AI + NLP

  21 hours

Big Data Business Intelligence for Telecom and Communication Service Providers

  35 hours

Data Science for Big Data Analytics

  35 hours

Data Science Programme

  245 hours

MATLAB Fundamentals, Data Science & Report Generation

  35 hours

Jupyter for Data Science Teams

  7 hours

F# for Data Science

  21 hours

Python Programming for Finance

  35 hours