Course Outline

Introduction

  • Overview of TextBlob features and architecture
  • NLP fundamentals

Getting Started

  • Installing TextBlob
  • Importing libraries and data

Building Text Classification Models

  • Loading data and creating classifiers
  • Evaluating classifiers
  • Updating classifiers with new data
  • Using feature extractors

Performing NLP Tasks using TextBlob

  • Tokenization  
  • WordNet integration  
  • Noun phrase extraction  
  • Part-of-speech tagging  
  • Sentiment analysis  
  • Spelling correction
  • Translation and language detection

APIs and Advanced Implementations

  • Sentiment analyzers  
  • Tokenizers
  • Noun phrase chunkers  
  • POS taggers  
  • Parsers  
  • Blobber

Troubleshooting

Summary and Next Steps

Requirements

  • An understanding of NLP concepts
  • Python programming experience

Audience

  • Data scientists
  • Developers
  14 Hours
 

Testimonials

Related Courses

Scaling Data Analysis with Python and Dask

  14 hours

Data Analysis with Python, Pandas, and Numpy

  14 hours

Accelerating Python Pandas Workflows with Modin

  14 hours

Machine Learning with Python and Pandas

  14 hours

FARM (FastAPI, React, and MongoDB) Full Stack Development

  14 hours

Developing APIs with Python and FastAPI

  14 hours

Web application development with Flask

  14 hours

Advanced Flask

  14 hours

Build REST APIs with Python and Flask

  14 hours

Kivy: Building Android Apps with Python

  7 hours

Game Development with PyGame

  7 hours

GUI Programming with Python and PyQt

  21 hours

Scientific Computing with Python SciPy

  7 hours

GUI Programming with Python and Tkinter

  14 hours

Web Development with Web2Py

  28 hours