Course Outline

Day 1 

  • Data Science: an overview
  • Practical part: Let’s get started with Python - Basic features of the language 
  • The data science life cycle - part 1
  • Practical part: Working with structured data - the Pandas library

Day 2 

  • The data science life cycle - part 2
  • Practical part: dealing with real data
  • Data visualisation
  • Practical part: the Matplotlib library

Day 3

  • SQL - part 1
  • Practical part: Creating a MySql database with tables, inserting data and performing simple queries 
  • SQL part 2
  • Practical part: Integrating MySql and Python 

Day 4

  • Supervised learning part 1
  • Practical part: regression
  • Supervised learning part 2
  • Practical part: classification

Day 5

  • Supervised learning part 3
  • Practical part: building a spam filter
  • Unsupervised learning
  • Practical part: Clustering images with k-means

Requirements

  • An understanding of mathematics and statistics.
  • Some programming experience, preferably in Python.

Audience

  • Professionals interested in making a career change 
  • People curious about Data Science and Data Analytics
  35 Hours
 

Testimonials

Related Courses

Kaggle

  14 hours

Accelerating Python Pandas Workflows with Modin

  14 hours

GPU Data Science with NVIDIA RAPIDS

  14 hours

Anaconda Ecosystem for Data Scientists

  14 hours

Big Data Business Intelligence for Telecom and Communication Service Providers

  35 hours

Data Science for Big Data Analytics

  35 hours

Data Science Programme

  245 hours

MATLAB Fundamentals, Data Science & Report Generation

  35 hours

Jupyter for Data Science Teams

  7 hours

F# for Data Science

  21 hours

Python Programming for Finance

  35 hours

Data Science essential for Marketing/Sales professionals

  21 hours

Research Methods and Professional Issues– Data science

  7 hours

A Practical Introduction to Data Science

  35 hours

Python in Data Science

  35 hours