Course Outline

Introduction

Overview of Kubeflow Features and Components

  • Containers, manifests, etc.

Overview of a Machine Learning Pipeline

  • Training, testing, tuning, deploying, etc.

Deploying Kubeflow to a Kubernetes Cluster

  • Preparing the execution environment (training cluster, production cluster, etc.)
  • Downloading, installing and customizing.

Running a Machine Learning Pipeline on Kubernetes

  • Building a TensorFlow pipeline.
  • Building a PyTorch pipleline.

Visualizing the Results

  • Exporting and visualizing pipeline metrics

Customizing the Execution Environment

  • Customizing the stack for diverse infrastructures
  • Upgrading a Kubeflow deployment

Running Kubeflow on Public Clouds

  • AWS, Microsoft Azure, Google Cloud Platform

Managing Production Workflows

  • Running with GitOps methodology
  • Scheduling jobs
  • Spawning Jupyter notebooks

Troubleshooting

Summary and Conclusion

Requirements

  • Familiarity with Python syntax 
  • Experience with Tensorflow, PyTorch, or other machine learning framework
  • A public cloud provider account (optional) 

Audience

  • Developers
  • Data scientists
  28 Hours
 

Testimonials

Related Courses

AdaBoost Python for Machine Learning

  14 hours

Artificial Intelligence (AI) with H2O

  14 hours

AutoML with Auto-Keras

  14 hours

AutoML

  14 hours

Google Cloud AutoML

  7 hours

AutoML with Auto-sklearn

  14 hours

Pattern Recognition

  21 hours

DataRobot

  7 hours

Data Mining with Weka

  14 hours

H2O AutoML

  14 hours

Machine Learning for Mobile Apps using Google’s ML Kit

  14 hours

Pattern Matching

  14 hours

Machine Learning with Random Forest

  14 hours

RapidMiner for Machine Learning and Predictive Analytics

  14 hours

Apache SystemML for Machine Learning

  14 hours