Machine Learning Training Courses in the UAE

Machine Learning Training Courses

Online or onsite, instructor-led live Machine Learning (ML) training courses demonstrate through hands-on practice how to apply machine learning techniques and tools for solving real-world problems in various industries. NobleProg ML courses cover different programming languages and frameworks, including Python, R language and Matlab. Machine Learning courses are offered for a number of industry applications, including Finance, Banking and Insurance and cover the fundamentals of Machine Learning as well as more advanced approaches such as Deep Learning.

Machine Learning training is available as "online live training" or "onsite live training". Online live training (aka "remote live training") is carried out by way of an interactive, remote desktop. Onsite live Machine Learning training can be carried out locally on customer premises in the UAE or in NobleProg corporate training centers in the UAE.

NobleProg -- Your Local Training Provider

Testimonials

★★★★★
★★★★★

ML (Machine Learning) Course Outlines in the UAE

Course Name
Duration
Overview
Course Name
Duration
Overview
14 hours
Overview
This course covers AI (emphasizing Machine Learning and Deep Learning) in Automotive Industry. It helps to determine which technology can be (potentially) used in multiple situation in a car: from simple automation, image recognition to autonomous decision making.
21 hours
Overview
This course introduces machine learning methods in robotics applications.

It is a broad overview of existing methods, motivations and main ideas in the context of pattern recognition.

After a short theoretical background, participants will perform simple exercise using open source (usually R) or any other popular software.
21 hours
Overview
PaddlePaddle (PArallel Distributed Deep LEarning) is a scalable deep learning platform developed by Baidu.

In this instructor-led, live training, participants will learn how to use PaddlePaddle to enable deep learning in their product and service applications.

By the end of this training, participants will be able to:

- Set up and configure PaddlePaddle
- Set up a Convolutional Neural Network (CNN) for image recognition and object detection
- Set up a Recurrent Neural Network (RNN) for sentiment analysis
- Set up deep learning on recommendation systems to help users find answers
- Predict click-through rates (CTR), classify large-scale image sets, perform optical character recognition(OCR), rank searches, detect computer viruses, and implement a recommendation system.

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 hours
Overview
In this instructor-led, live training, we go over the principles of neural networks and use OpenNN to implement a sample application.

Format of the course

- Lecture and discussion coupled with hands-on exercises.
7 hours
Overview
In this instructor-led, live training, participants will learn how to set up and use OpenNMT to carry out translation of various sample data sets. The course starts with an overview of neural networks as they apply to machine translation. Participants will carry out live exercises throughout the course to demonstrate their understanding of the concepts learned and get feedback from the instructor.

By the end of this training, participants will have the knowledge and practice needed to implement a live OpenNMT solution.

Source and target language samples will be pre-arranged per the audience's requirements.

Format of the Course

- Part lecture, part discussion, heavy hands-on practice
14 hours
Overview
The Apache OpenNLP library is a machine learning based toolkit for processing natural language text. It supports the most common NLP tasks, such as language detection, tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking, parsing and coreference resolution.

In this instructor-led, live training, participants will learn how to create models for processing text based data using OpenNLP. Sample training data as well customized data sets will be used as the basis for the lab exercises.

By the end of this training, participants will be able to:

- Install and configure OpenNLP
- Download existing models as well as create their own
- Train the models on various sets of sample data
- Integrate OpenNLP with existing Java applications

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 hours
Overview
OpenFace is Python and Torch based open-source, real-time facial recognition software based on Google's FaceNet research.

In this instructor-led, live training, participants will learn how to use OpenFace's components to create and deploy a sample facial recognition application.

By the end of this training, participants will be able to:

- Work with OpenFace's components, including dlib, OpenVC, Torch, and nn4 to implement face detection, alignment, and transformation
- Apply OpenFace to real-world applications such as surveillance, identity verification, virtual reality, gaming, and identifying repeat customers, etc.

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
14 hours
Overview

This instructor-led, live training in the UAE (online or onsite) is aimed at software engineers who wish to program in Python with OpenCV 4 for deep learning.

By the end of this training, participants will be able to:

  • View, load, and classify images and videos using OpenCV 4.
  • Implement deep learning in OpenCV 4 with TensorFlow and Keras.
  • Run deep learning models and generate impactful reports from images and videos.
21 hours
Overview
Course is dedicated for those who would like to know an alternative program to the commercial MATLAB package. The three-day training provides comprehensive information on moving around the environment and performing the OCTAVE package for data analysis and engineering calculations. The training recipients are beginners but also those who know the program and would like to systematize their knowledge and improve their skills. Knowledge of other programming languages is not required, but it will greatly facilitate the learners' acquisition of knowledge. The course will show you how to use the program in many practical examples.
14 hours
Overview
This classroom based training session will contain presentations and computer based examples and case study exercises to undertake with relevant neural and deep network libraries
28 hours
Overview
This course will give you knowledge in neural networks and generally in machine learning algorithm, deep learning (algorithms and applications).

This training is more focus on fundamentals, but will help you to choose the right technology : TensorFlow, Caffe, Teano, DeepDrive, Keras, etc. The examples are made in TensorFlow.
21 hours
Overview

This instructor-led, live training in the UAE (online or onsite) is aimed at data scientists who wish to use Apache MXNet's to build and deploy a deep learning model for image recognition.

By the end of this training, participants will be able to:

  • Install and configure Apache MXNet and its components.
  • Understand MXNet's architecture and data structures.
  • Use Apache MXNet's low-level and high-level APIs to efficiently build neural networks.
  • Build a convolutional neural network for image classification.
21 hours
Overview
This classroom based training session will explore machine learning tools with (suggested) Python. Delegates will have computer based examples and case study exercises to undertake.
21 hours
Overview
The aim of this course is to provide general proficiency in applying Machine Learning methods in practice. Through the use of the Python programming language and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
21 hours
Overview
PredictionIO is an open source Machine Learning Server built on top of state-of-the-art open source stack.

Audience

This course is directed at developers and data scientists who want to create predictive engines for any machine learning task.
14 hours
Overview

This instructor-led, live training in the UAE (online or onsite) is aimed at machine learning engineers who wish to use Azure Machine Learning and Azure DevOps to facilitate MLOps practices.

By the end of this training, participants will be able to:

  • Build reproducible workflows and machine learning models.
  • Manage the machine learning lifecycle.
  • Track and report model version history, assets, and more.
  • Deploy production ready machine learning models anywhere.
35 hours
Overview

This instructor-led, live training in the UAE (online or onsite) is aimed at engineers who wish to evaluate the approaches and tools available today to make an intelligent decision on the path forward in adopting MLOps within their organization.

By the end of this training, participants will be able to:

  • Install and configure various MLOps frameworks and tools.
  • Assemble the right kind of team with the right skills for constructing and supporting an MLOps system.
  • Prepare, validate and version data for use by ML models.
  • Understand the components of an ML Pipeline and the tools needed to build one.
  • Experiment with different machine learning frameworks and servers for deploying to production.
  • Operationalize the entire Machine Learning process so that it's reproduceable and maintainable.
14 hours
Overview
This classroom based training session will explore machine learning techniques, with computer based examples and case study solving exercises using a relevant programme languauge
14 hours
Overview
In this instructor-led, live training, participants will learn how to use the iOS Machine Learning (ML) technology stack as they step through the creation and deployment of an iOS mobile app.

By the end of this training, participants will be able to:

- Create a mobile app capable of image processing, text analysis and speech recognition
- Access pre-trained ML models for integration into iOS apps
- Create a custom ML model
- Add Siri Voice support to iOS apps
- Understand and use frameworks such as coreML, Vision, CoreGraphics, and GamePlayKit
- Use languages and tools such as Python, Keras, Caffee, Tensorflow, sci-kit learn, libsvm, Anaconda, and Spyder

Audience

- Developers

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
7 hours
Overview
This training course is for people that would like to apply basic Machine Learning techniques in practical applications.

Audience

Data scientists and statisticians that have some familiarity with machine learning and know how to program R. The emphasis of this course is on the practical aspects of data/model preparation, execution, post hoc analysis and visualization. The purpose is to give a practical introduction to machine learning to participants interested in applying the methods at work

Sector specific examples are used to make the training relevant to the audience.
14 hours
Overview
The aim of this course is to provide a basic proficiency in applying Machine Learning methods in practice. Through the use of the R programming platform and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
14 hours
Overview
The aim of this course is to provide a basic proficiency in applying Machine Learning methods in practice. Through the use of the Python programming language and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
14 hours
Overview
The aim of this course is to provide a basic proficiency in applying Machine Learning methods in practice. Through the use of the Scala programming language and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
21 hours
Overview

This instructor-led, live training in the UAE (online or onsite) is aimed at data scientists who wish to go beyond building ML models and optimize the ML model creation, tracking, and deployment process.

By the end of this training, participants will be able to:

  • Install and configure MLflow and related ML libraries and frameworks.
  • Appreciate the importance of trackability, reproducability and deployability of an ML model
  • Deploy ML models to different public clouds, platforms, or on-premise servers.
  • Scale the ML deployment process to accommodate multiple users collaborating on a project.
  • Set up a central registry to experiment with, reproduce, and deploy ML models.
28 hours
Overview
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. R is a popular programming language in the financial industry. It is used in financial applications ranging from core trading programs to risk management systems.

In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the finance industry. R will be used as the programming language.

Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of team projects.

By the end of this training, participants will be able to:

- Understand the fundamental concepts in machine learning
- Learn the applications and uses of machine learning in finance
- Develop their own algorithmic trading strategy using machine learning with R

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
Overview
Machine learning is a branch of Artificial Intelligence wherein computers have the ability to learn without being explicitly programmed. Python is a programming language famous for its clear syntax and readability. It offers an excellent collection of well-tested libraries and techniques for developing machine learning applications.

In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the finance industry.

Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of team projects.

By the end of this training, participants will be able to:

- Understand the fundamental concepts in machine learning
- Learn the applications and uses of machine learning in finance
- Develop their own algorithmic trading strategy using machine learning with Python

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hours
Overview
This training course is for people that would like to apply Machine Learning in practical applications for their team. The training will not dive into technicalities and revolve around basic concepts and business/operational applications of the same.

Target Audience

- Investors and AI entrepreneurs
- Managers and Engineers whose company is venturing into AI space
- Business Analysts & Investors
14 hours
Overview
Pattern Matching is a technique used to locate specified patterns within an image. It can be used to determine the existence of specified characteristics within a captured image, for example the expected label on a defective product in a factory line or the specified dimensions of a component. It is different from "Pattern Recognition" (which recognizes general patterns based on larger collections of related samples) in that it specifically dictates what we are looking for, then tells us whether the expected pattern exists or not.

Format of the Course

- This course introduces the approaches, technologies and algorithms used in the field of pattern matching as it applies to Machine Vision.
14 hours
Overview

This instructor-led, live training in the UAE (online or onsite) is aimed at data scientists who wish to use Pandas to preform predictive analysis with machine learning.

By the end of this training, participants will be able to:

  • Perform data wrangling in Python.
  • Conduct ETL operations for machine learning.
  • Create data visualizations with Pandas
7 hours
Overview

This instructor-led, live training in the UAE (online or onsite) is aimed at technical persons who wish to learn how to implement a machine learning strategy while maximizing the use of big data.

By the end of this training, participants will:

  • Understand the evolution and trends for machine learning.
  • Know how machine learning is being used across different industries.
  • Become familiar with the tools, skills and services available to implement machine learning within an organization.
  • Understand how machine learning can be used to enhance data mining and analysis.
  • Learn what a data middle backend is, and how it is being used by businesses.
  • Understand the role that big data and intelligent applications are playing across industries.
Online Machine Learning courses, Weekend Machine Learning courses, Evening ML (Machine Learning) training, ML (Machine Learning) boot camp, Machine Learning instructor-led, Weekend Machine Learning training, Evening Machine Learning courses, Machine Learning (ML) coaching, Machine Learning instructor, ML (Machine Learning) trainer, Machine Learning (ML) training courses, Machine Learning classes, Machine Learning on-site, Machine Learning (ML) private courses, ML (Machine Learning) one on one training

Course Discounts

Course Discounts Newsletter

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

Some of our clients

This site in other countries/regions