Course Outline


  • Difference between statistical learning (statistical analysis) and machine learning
  • Adoption of machine learning technology and talent by finance companies

Understanding Different Types of Machine Learning

  • Supervised learning vs unsupervised learning
  • Iteration and evaluation
  • Bias-variance trade-off
  • Combining supervised and unsupervised learning (semi-supervised learning)

Understanding Machine Learning Languages and Toolsets

  • Open source vs proprietary systems and software
  • Python vs R vs Matlab
  • Libraries and frameworks

Understanding Neural Networks

Understanding Basic Concepts in Finance

  • Understanding Stocks Trading
  • Understanding Time Series Data
  • Understanding Financial Analyses

Machine Learning Case Studies in Finance

  • Signal Generation and Testing
  • Feature Engineering
  • Artificial Intelligence Algorithmic Trading
  • Quantitative Trade Predictions
  • Robo-Advisors for Portfolio Management
  • Risk Management and Fraud Detection
  • Insurance Underwriting

Hands-on: Python for Machine Learning

  • Setting Up the Workspace
  • Obtaining Python machine learning libraries and packages
  • Working with Pandas
  • Working with Scikit-Learn

Importing Financial Data into Python

  • Using Pandas
  • Using Quandl
  • Integrating with Excel

Working with Time Series Data with Python

  • Exploring Your Data
  • Visualizing Your Data

Implementing Common Financial Analyses with Python

  • Returns
  • Moving Windows
  • Volatility Calculation
  • Ordinary Least-Squares Regression (OLS)    

Developing an Algorithmic Trading Strategy Using Supervised Machine Learning with Python

  • Understanding the Momentum Trading Strategy
  • Understanding the Reversion Trading Strategy
  • Implementing Your Simple Moving Averages (SMA) Trading Strategy

Backtesting Your Machine Learning Trading Strategy

  • Learning Backtesting Pitfalls
  • Components of Your Backtester
  • Using Python Backtesting Tools
  • Implementing Your Simple Backtester

Improving Your Machine Learning Trading Strategy

  • KMeans
  • K-Nearest Neighbors (KNN)
  • Classification or Regression Trees
  • Genetic Algorithm
  • Working with Multi-Symbol Portfolios
  • Using a Risk Management Framework
  • Using Event-Driven Backtesting

Evaluating Your Machine Learning Trading Strategy's Performance

  • Using the Sharpe Ratio
  • Calculating a Maximum Drawdown
  • Using Compound Annual Growth Rate (CAGR)
  • Measuring Distribution of Returns
  • Using Trade-Level Metrics
  • Summary


Closing Remarks


  • Basic experience with Python programming
  • Basic familiarity with statistics and linear algebra
  21 Hours


Related Courses

Data Mining with Weka

  14 hours

AdaBoost Python for Machine Learning

  14 hours

Machine Learning with Random Forest

  14 hours

Machine Learning for Mobile Apps using Google’s ML Kit

  14 hours


  7 hours

Artificial Intelligence (AI) with H2O

  14 hours

H2O AutoML

  14 hours

AutoML with Auto-sklearn

  14 hours

AutoML with Auto-Keras

  14 hours


  14 hours

Google Cloud AutoML

  7 hours

RapidMiner for Machine Learning and Predictive Analytics

  14 hours

Pattern Recognition

  21 hours

Pattern Matching

  14 hours

Apache SystemML for Machine Learning

  14 hours