Course Outline

Introduction to Neural Networks

Introduction to Applied Machine Learning

  • Statistical learning vs. Machine learning
  • Iteration and evaluation
  • Bias-Variance trade-off

Machine Learning with Python

  • Choice of libraries
  • Add-on tools

Machine learning Concepts and Applications

Regression

  • Linear regression
  • Generalizations and Nonlinearity
  • Use cases

Classification

  • Bayesian refresher
  • Naive Bayes
  • Logistic regression
  • K-Nearest neighbors
  • Use Cases

Cross-validation and Resampling

  • Cross-validation approaches
  • Bootstrap
  • Use Cases

Unsupervised Learning

  • K-means clustering
  • Examples
  • Challenges of unsupervised learning and beyond K-means

Short Introduction to NLP methods

  • word and sentence tokenization
  • text classification
  • sentiment analysis
  • spelling correction
  • information extraction
  • parsing
  • meaning extraction
  • question answering

Artificial Intelligence & Deep Learning

Technical Overview

  • R v/s Python
  • Caffe v/s Tensor Flow
  • Various Machine Learning Libraries

Industry Case Studies

Requirements

  1. Should have basic knowledge of business operation, and technical knowledge as well
  2. Must have basic understanding of software and systems
  3. Basic understanding of Statistics (in Excel levels)
  21 Hours
 

Testimonials

Related Courses

Data Mining with Weka

  14 hours

AdaBoost Python for Machine Learning

  14 hours

Machine Learning with Random Forest

  14 hours

Machine Learning for Mobile Apps using Google’s ML Kit

  14 hours

DataRobot

  7 hours

Artificial Intelligence (AI) with H2O

  14 hours

H2O AutoML

  14 hours

AutoML with Auto-sklearn

  14 hours

AutoML with Auto-Keras

  14 hours

AutoML

  14 hours

Google Cloud AutoML

  7 hours

RapidMiner for Machine Learning and Predictive Analytics

  14 hours

Pattern Recognition

  21 hours

Pattern Matching

  14 hours

Apache SystemML for Machine Learning

  14 hours