Course Outline

Introduction to Text Summarization with Python

  • Comparing sample text with auto-generated summaries
  • Installing sumy (a Python Command-Line Executable for Text Summarization)
  • Using sumy as a Command-Line Text Summarization Utility (Hands-On Exercise)

Evaluating three Python summarization libraries: sumy 0.7.0, pysummarization 1.0.4, readless 1.0.17 based on documented features

Choosing a library: sumy, pysummarization or readless

Creating a Python application using sumy library on Python 2.7/3.3+

  • Installing the sumy library for Text Summarization
  • Using the Edmundson (Extraction) method in sumy Python Library for Text

Summarization

  • Creating simple Python test code that uses sumy library to generate a text summary

Creating a Python application using pysummarization library on Python 2.7/3.3+

  • Installing pysummarization library for Text Summarization
  • Using the pysummarization library for Text Summarization
  • Creating simple Python test code that uses pysummarization library to generate a text summary

Creating a Python application using readless library on Python 2.7/3.3+

  • Installing readless library for Text Summarization
  • Using the readless library for Text Summarization

Creating simple Python test code that uses readless library to generate a text summary

Troubleshooting and debugging

Closing Remarks

Requirements

  • An understanding of Python programming (Python 2.7/3.3+)
  • An understanding of Python libraries in general
  14 Hours
 

Testimonials

Related Courses

Data Mining with Weka

  14 hours

AdaBoost Python for Machine Learning

  14 hours

Machine Learning with Random Forest

  14 hours

Machine Learning for Mobile Apps using Google’s ML Kit

  14 hours

DataRobot

  7 hours

Artificial Intelligence (AI) with H2O

  14 hours

H2O AutoML

  14 hours

AutoML with Auto-sklearn

  14 hours

AutoML with Auto-Keras

  14 hours

AutoML

  14 hours

Google Cloud AutoML

  7 hours

RapidMiner for Machine Learning and Predictive Analytics

  14 hours

Pattern Recognition

  21 hours

Pattern Matching

  14 hours

Apache SystemML for Machine Learning

  14 hours