Course Outline

Artificial Intelligence History

  • Intelligent Agents

Problem Solving

  • Solving Problems by Searching
  • Beyond Classical Search
  • Adversarial Search
  • Constraint Satisfaction Problems

Knowledge and Reasoning

  • Logical Agents
  • First-Order Logic
  • Inference in First-Order Logic
  • Classical Planning
  • Planning and Acting in the Real World
  • Knowledge Representation

Uncertain Knowledge and Reasoning

  • Quantifying Uncertainty
  • Probabilistic Reasoning
  • Probabilistic Reasoning over Time
  • Making Simple Decisions
  • Making Complex Decisions

Learning

  • Learning from Examples
  • Knowledge in Learning
  • Learning Probabilistic Models
  • Reinforcement Learning

Communicating, Perceiving, and Acting;

  • Natural Language Processing
  • Natural Language for Communication
  • Perception
  • Robotics

Conclusions

  • Philosophical Foundations
  • AI: The Present and Future

Requirements

General knowledge of computing, biology, mathematics and physics

  7 Hours
 

Testimonials

Related Courses

AdaBoost Python for Machine Learning

  14 hours

Artificial Intelligence (AI) with H2O

  14 hours

AutoML with Auto-Keras

  14 hours

AutoML

  14 hours

Google Cloud AutoML

  7 hours

AutoML with Auto-sklearn

  14 hours

Pattern Recognition

  21 hours

DataRobot

  7 hours

Data Mining with Weka

  14 hours

H2O AutoML

  14 hours

Machine Learning for Mobile Apps using Google’s ML Kit

  14 hours

Pattern Matching

  14 hours

Machine Learning with Random Forest

  14 hours

RapidMiner for Machine Learning and Predictive Analytics

  14 hours

Apache SystemML for Machine Learning

  14 hours