Deep Learning for Vision with Caffe Training Course
Caffe is a deep learning framework made with expression, speed, and modularity in mind.
This course explores the application of Caffe as a Deep learning framework for image recognition using MNIST as an example
Audience
This course is suitable for Deep Learning researchers and engineers interested in utilizing Caffe as a framework.
After completing this course, delegates will be able to:
- understand Caffe’s structure and deployment mechanisms
- carry out installation / production environment / architecture tasks and configuration
- assess code quality, perform debugging, monitoring
- implement advanced production like training models, implementing layers and logging
Course Outline
Installation
- Docker
- Ubuntu
- RHEL / CentOS / Fedora installation
- Windows
Caffe Overview
- Nets, Layers, and Blobs: the anatomy of a Caffe model.
- Forward / Backward: the essential computations of layered compositional models.
- Loss: the task to be learned is defined by the loss.
- Solver: the solver coordinates model optimization.
- Layer Catalogue: the layer is the fundamental unit of modeling and computation – Caffe’s catalogue includes layers for state-of-the-art models.
- Interfaces: command line, Python, and MATLAB Caffe.
- Data: how to caffeinate data for model input.
- Caffeinated Convolution: how Caffe computes convolutions.
New models and new code
- Detection with Fast R-CNN
- Sequences with LSTMs and Vision + Language with LRCN
- Pixelwise prediction with FCNs
- Framework design and future
Examples:
- MNIST
Need help picking the right course?
Deep Learning for Vision with Caffe Training Course - Booking
Deep Learning for Vision with Caffe Training Course - Enquiry
Deep Learning for Vision with Caffe - Consultancy Enquiry
Testimonials (1)
I genuinely enjoyed the hands-on approach.
Kevin De Cuyper
Course - Computer Vision with OpenCV
Upcoming Courses
Related Courses
OpenFace: Creating Facial Recognition Systems
14 HoursOpenFace is Python and Torch based open-source, real-time facial recognition software based on Google's FaceNet research.
In this instructor-led, live training, participants will learn how to use OpenFace's components to create and deploy a sample facial recognition application.
By the end of this training, participants will be able to:
- Work with OpenFace's components, including dlib, OpenVC, Torch, and nn4 to implement face detection, alignment, and transformation
- Apply OpenFace to real-world applications such as surveillance, identity verification, virtual reality, gaming, and identifying repeat customers, etc.
Audience
- Developers
- Data scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Raspberry Pi + OpenCV for Facial Recognition
21 HoursThis instructor-led, live training introduces the software, hardware, and step-by-step process needed to build a facial recognition system from scratch. Facial Recognition is also known as Face Recognition.
The hardware used in this lab includes Rasberry Pi, a camera module, servos (optional), etc. Participants are responsible for purchasing these components themselves. The software used includes OpenCV, Linux, Python, etc.
By the end of this training, participants will be able to:
- Install Linux, OpenCV and other software utilities and libraries on a Rasberry Pi.
- Configure OpenCV to capture and detect facial images.
- Understand the various options for packaging a Rasberry Pi system for use in real-world environments.
- Adapt the system for a variety of use cases, including surveillance, identity verification, etc.
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Note
- Other hardware and software options include: Arduino, OpenFace, Windows, etc. If you wish to use any of these, please contact us to arrange.
Fiji: Introduction to Scientific Image Processing
21 HoursFiji is an open-source image processing package that bundles ImageJ (an image processing program for scientific multidimensional images) and a number of plugins for scientific image analysis.
In this instructor-led, live training, participants will learn how to use the Fiji distribution and its underlying ImageJ program to create an image analysis application.
By the end of this training, participants will be able to:
- Use Fiji's advanced programming features and software components to extend ImageJ
- Stitch large 3d images from overlapping tiles
- Automatically update a Fiji installation on startup using the integrated update system
- Select from a broad selection of scripting languages to build custom image analysis solutions
- Use Fiji's powerful libraries, such as ImgLib on large bioimage datasets
- Deploy their application and collaborate with other scientists on similar projects
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Marvin Framework for Image and Video Processing
14 HoursMarvin is an extensible, cross-platform, open-source image and video processing framework developed in Java. Developers can use Marvin to manipulate images, extract features from images for classification tasks, generate figures algorithmically, process video file datasets, and set up unit test automation.
Some of Marvin's video applications include filtering, augmented reality, object tracking and motion detection.
In this instructor-led, live course participants will learn the principles of image and video analysis and utilize the Marvin Framework and its image processing algorithms to construct their own application.
Format of the Course
- The basic principles of image analysis, video analysis and the Marvin Framework are first introduced. Students are given project-based tasks which allow them to practice the concepts learned. By the end of the class, participants will have developed their own application using the Marvin Framework and libraries.
PaddlePaddle
21 HoursPaddlePaddle (PArallel Distributed Deep LEarning) is a scalable deep learning platform developed by Baidu.
In this instructor-led, live training, participants will learn how to use PaddlePaddle to enable deep learning in their product and service applications.
By the end of this training, participants will be able to:
- Set up and configure PaddlePaddle
- Set up a Convolutional Neural Network (CNN) for image recognition and object detection
- Set up a Recurrent Neural Network (RNN) for sentiment analysis
- Set up deep learning on recommendation systems to help users find answers
- Predict click-through rates (CTR), classify large-scale image sets, perform optical character recognition(OCR), rank searches, detect computer viruses, and implement a recommendation system.
Audience
- Developers
- Data scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Pattern Matching
14 HoursPattern Matching is a technique used to locate specified patterns within an image. It can be used to determine the existence of specified characteristics within a captured image, for example the expected label on a defective product in a factory line or the specified dimensions of a component. It is different from "Pattern Recognition" (which recognizes general patterns based on larger collections of related samples) in that it specifically dictates what we are looking for, then tells us whether the expected pattern exists or not.
Format of the Course
- This course introduces the approaches, technologies and algorithms used in the field of pattern matching as it applies to Machine Vision.
Scilab
14 HoursScilab is a well-developed, free, and open-source high-level language for scientific data manipulation. Used for statistics, graphics and animation, simulation, signal processing, physics, optimization, and more, its central data structure is the matrix, simplifying many types of problems compared to alternatives such as FORTRAN and C derivatives. It is compatible with languages such as C, Java, and Python, making it suitable as for use as a supplement to existing systems.
In this instructor-led training, participants will learn the advantages of Scilab compared to alternatives like Matlab, the basics of the Scilab syntax as well as some advanced functions, and interface with other widely used languages, depending on demand. The course will conclude with a brief project focusing on image processing.
By the end of this training, participants will have a grasp of the basic functions and some advanced functions of Scilab, and have the resources to continue expanding their knowledge.
Audience
- Data scientists and engineers, especially with interest in image processing and facial recognition
Format of the course
- Part lecture, part discussion, exercises and intensive hands-on practice, with a final project
Computer Vision with OpenCV
28 HoursOpenCV (Open Source Computer Vision Library: http://opencv.org) is an open-source BSD-licensed library that includes several hundreds of computer vision algorithms.
Audience
This course is directed at engineers and architects seeking to utilize OpenCV for computer vision projects
Python and Deep Learning with OpenCV 4
14 HoursThis instructor-led, live training in the UAE (online or onsite) is aimed at software engineers who wish to program in Python with OpenCV 4 for deep learning.
By the end of this training, participants will be able to:
- View, load, and classify images and videos using OpenCV 4.
- Implement deep learning in OpenCV 4 with TensorFlow and Keras.
- Run deep learning models and generate impactful reports from images and videos.
Advanced Stable Diffusion: Deep Learning for Text-to-Image Generation
21 HoursThis instructor-led, live training in the UAE (online or onsite) is aimed at intermediate to advanced-level data scientists, machine learning engineers, deep learning researchers, and computer vision experts who wish to expand their knowledge and skills in deep learning for text-to-image generation.
By the end of this training, participants will be able to:
- Understand advanced deep learning architectures and techniques for text-to-image generation.
- Implement complex models and optimizations for high-quality image synthesis.
- Optimize performance and scalability for large datasets and complex models.
- Tune hyperparameters for better model performance and generalization.
- Integrate Stable Diffusion with other deep learning frameworks and tools
Introduction to Stable Diffusion for Text-to-Image Generation
21 HoursThis instructor-led, live training in (online or onsite) is aimed at data scientists, machine learning engineers, and computer vision researchers who wish to leverage Stable Diffusion to generate high-quality images for a variety of use cases.
By the end of this training, participants will be able to:
- Understand the principles of Stable Diffusion and how it works for image generation.
- Build and train Stable Diffusion models for image generation tasks.
- Apply Stable Diffusion to various image generation scenarios, such as inpainting, outpainting, and image-to-image translation.
- Optimize the performance and stability of Stable Diffusion models.
AlphaFold
7 HoursThis instructor-led, live training in the UAE (online or onsite) is aimed at biologists who wish to understand how AlphaFold works and use AlphaFold models as guides in their experimental studies.
By the end of this training, participants will be able to:
- Understand the basic principles of AlphaFold.
- Learn how AlphaFold works.
- Learn how to interpret AlphaFold predictions and results.
Edge AI with TensorFlow Lite
14 HoursThis instructor-led, live training in the UAE (online or onsite) is aimed at intermediate-level developers, data scientists, and AI practitioners who wish to leverage TensorFlow Lite for Edge AI applications.
By the end of this training, participants will be able to:
- Understand the fundamentals of TensorFlow Lite and its role in Edge AI.
- Develop and optimize AI models using TensorFlow Lite.
- Deploy TensorFlow Lite models on various edge devices.
- Utilize tools and techniques for model conversion and optimization.
- Implement practical Edge AI applications using TensorFlow Lite.