Course Outline

  1. Data preprocessing

    1. Data Cleaning
    2. Data integration and transformation
    3. Data reduction
    4. Discretization and concept hierarchy generation
  2. Statistical inference

    1. Probability distributions, Random variables, Central limit theorem
    2. Sampling
    3. Confidence intervals
    4. Statistical Inference
    5. Hypothesis testing
  3. Multivariate linear regression

    1. Specification
    2. Subset selection
    3. Estimation
    4. Validation
    5. Prediction
  4. Classification methods

    1. Logistic regression
    2. Linear discriminant analysis
    3. K-nearest neighbours
    4. Naive Bayes
    5. Comparison of Classification methods
  5. Neural Networks

    1. Fitting neural networks
    2. Training neural networks issues
  6. Decision trees

    1. Regression trees
    2. Classification trees
    3. Trees Versus Linear Models
  7. Bagging, Random Forests, Boosting

    1. Bagging
    2. Random Forests
    3. Boosting
  8. Support Vector Machines and Flexible disct

    1. Maximal Margin classifier
    2. Support vector classifiers
    3. Support vector machines
    4. 2 and more classes SVM’s
    5. Relationship to logistic regression
  9. Principal Components Analysis

  10. Clustering

    1. K-means clustering
    2. K-medoids clustering
    3. Hierarchical clustering
    4. Density based clustering
  11. Model Assesment and Selection

    1. Bias, Variance and Model complexity
    2. In-sample prediction error
    3. The Bayesian approach
    4. Cross-validation
    5. Bootstrap methods
  28 Hours
 

Testimonials

Related Courses

Knowledge Discovery in Databases (KDD)

  21 hours

Statistical and Econometric Modelling

  21 hours

Statistical Analysis using SPSS

  21 hours

HR Analytics for Public Organisations

  14 hours

Talent Acquisition Analytics

  14 hours

Econometrics: Eviews and Risk Simulator

  21 hours

Introduction to Data Visualization with Tidyverse and R

  7 hours

R for Data Analysis and Research

  7 hours

Introduction to R

  21 hours

Forecasting with R

  14 hours

Marketing Analytics using R

  21 hours

Neural Network in R

  14 hours

Advanced R Programming

  7 hours

Data Mining with R

  14 hours

Programming with Big Data in R

  21 hours