Course Outline


  • Kubeflow on GCK vs on-premise vs on other public cloud providers

Overview of Kubeflow Features on GCP

  • Declarative management of resources
  • GKE autoscaling for machine learning (ML) workloads
  • Secure connections to Jupyter
  • Persistent logs for debugging and troubleshooting
  • GPUs and TPUs to accelerate workloads

Overview of Environment Setup

  • Virtual machine preparation
  • Kubernetes cluster setup
  • Kubeflow installation

Deploying Kubeflow

  • Deploying  Kubeflow on GCP
  • Deploying Kubeflow across on-premises and cloud environments
  • Deploying Kubeflow on GKE
  • Setting up a custom domain on GKE

Pipelines on GCP

  • Setting up an end-to-end Kubeflow pipeline
  • Customizing Kubeflow Pipelines

Securing a Kubeflow Cluster

  • Setting up authentication and authorization
  • Using VPC service controls and private GKE

Storing, Accessing, Managing Data

  • Understanding shared filesystems and Network Attached Storage (NAS)
  • Using managed file storage services in GCE

Running an ML Training Job

  • Training an MNIST model

Administering Kubeflow

  • Logging and monitoring


Summary and Conclusion


  • An understanding of machine learning concepts.
  • Knowledge of cloud computing concepts.
  • A general understanding of containers (Docker) and orchestration (Kubernetes).
  • Some Python programming experience is helpful.
  • Experience working with a command line.


  • Data science engineers.
  • DevOps engineers interesting in machine learning model deployment.
  • Infrastructure engineers interesting in machine learning model deployment.
  • Software engineers wishing to automate the integration and deployment of machine learning features with their application.
  28 Hours


Related Courses


  21 hours

MLOps: CI/CD for Machine Learning

  35 hours

Kubeflow on AWS

  28 hours

Kubeflow on Azure

  28 hours

Kubeflow on IBM Cloud

  28 hours


  35 hours

Kubeflow on OpenShift

  28 hours

Kubeflow Fundamentals

  28 hours