Course Outline

Introduction

Pandas Overview

  • What is Pandas?
  • Pandas features

Preparing the Development Environment

  • Installing and configuring Pandas

Dataframes

  • Loading a dataset
  • Preparing data
  • Using the Pandas API
  • Working with calculations

Data Structures

  • Working with series
  • Using regex
  • Binning data
  • Normalizing data

Data Visualization

  • Creating graphs with Matplotlib
  • Using Seaborn

Data Assembly

  • Concatenating data
  • Merging data

Predictive Analysis

  • Finding and replacing empty values
  • Using index values
  • Adding time series data
  • Working with frequencies

Summary and Conclusion

Requirements

  • An understanding of data analysis
  • Python programming experience

Audience

  • Data Scientists
  14 Hours
 

Testimonials

Related Courses

AdaBoost Python for Machine Learning

  14 hours

Artificial Intelligence (AI) with H2O

  14 hours

AutoML with Auto-Keras

  14 hours

AutoML

  14 hours

Google Cloud AutoML

  7 hours

AutoML with Auto-sklearn

  14 hours

Pattern Recognition

  21 hours

DataRobot

  7 hours

Data Mining with Weka

  14 hours

H2O AutoML

  14 hours

Machine Learning for Mobile Apps using Google’s ML Kit

  14 hours

Pattern Matching

  14 hours

Machine Learning with Random Forest

  14 hours

RapidMiner for Machine Learning and Predictive Analytics

  14 hours

Apache SystemML for Machine Learning

  14 hours