Course Outline

  1. Scala primer

    • A quick introduction to Scala
    • Labs : Getting know Scala
  2. Spark Basics

    • Background and history
    • Spark and Hadoop
    • Spark concepts and architecture
    • Spark eco system (core, spark sql, mlib, streaming)
    • Labs : Installing and running Spark
  3. First Look at Spark

    • Running Spark in local mode
    • Spark web UI
    • Spark shell
    • Analyzing dataset – part 1
    • Inspecting RDDs
    • Labs: Spark shell exploration
  4. RDDs

    • RDDs concepts
    • Partitions
    • RDD Operations / transformations
    • RDD types
    • Key-Value pair RDDs
    • MapReduce on RDD
    • Caching and persistence
    • Labs : creating & inspecting RDDs;   Caching RDDs
  5. Spark API programming

    • Introduction to Spark API / RDD API
    • Submitting the first program to Spark
    • Debugging / logging
    • Configuration properties
    • Labs : Programming in Spark API, Submitting jobs
  6. Spark SQL

    • SQL support in Spark
    • Dataframes
    • Defining tables and importing datasets
    • Querying data frames using SQL
    • Storage formats : JSON / Parquet
    • Labs : Creating and querying data frames; evaluating data formats
  7. MLlib

    • MLlib intro
    • MLlib algorithms
    • Labs : Writing MLib applications
  8. GraphX

    • GraphX library overview
    • GraphX APIs
    • Labs : Processing graph data using Spark
  9. Spark Streaming

    • Streaming overview
    • Evaluating Streaming platforms
    • Streaming operations
    • Sliding window operations
    • Labs : Writing spark streaming applications
  10. Spark and Hadoop

    • Hadoop Intro (HDFS / YARN)
    • Hadoop + Spark architecture
    • Running Spark on Hadoop YARN
    • Processing HDFS files using Spark
  11. Spark Performance and Tuning

    • Broadcast variables
    • Accumulators
    • Memory management & caching
  12. Spark Operations

    • Deploying Spark in production
    • Sample deployment templates
    • Configurations
    • Monitoring
    • Troubleshooting

Requirements

PRE-REQUISITES

familiarity with either Java / Scala / Python language (our labs in Scala and Python)
basic understanding of Linux development environment (command line navigation / editing files using VI or nano)

  21 Hours
 

Testimonials

Related Courses

Python and Spark for Big Data (PySpark)

  21 hours

Introduction to Graph Computing

  28 hours

Apache Spark MLlib

  35 hours

Artificial Intelligence - the most applied stuff - Data Analysis + Distributed AI + NLP

  21 hours

Hortonworks Data Platform (HDP) for Administrators

  21 hours

Magellan: Geospatial Analytics on Spark

  14 hours

Alluxio: Unifying Disparate Storage Systems

  7 hours

Apache Spark SQL

  7 hours

A Practical Introduction to Stream Processing

  21 hours

Big Data Analytics in Health

  21 hours

Apache Spark in the Cloud

  21 hours

Apache Spark Streaming with Scala

  21 hours

SMACK Stack for Data Science

  14 hours

Apache Spark Fundamentals

  21 hours

Apache Spark for .NET Developers

  21 hours