Data Visualization Training Courses

Data Visualization Course Outlines

Code Name Duration Overview
BigData_ A practical introduction to Data Analysis and Big Data 28 hours Participants who complete this training will gain a practical, real-world understanding of Big Data and its related technologies, methodologies and tools. Participants will have the opportunity to put this knowledge into practice through hands-on exercises. Group interaction and instructor feedback make up an important component of the class. The course starts with an introduction to elemental concepts of Big Data, then progresses into the programming languages and methodologies used to perform Data Analysis. Finally, we discuss the tools and infrastructure that enable Big Data storage, Distributed Processing, and Scalability. Audience Developers / programmers IT consultants Format of the course     Part lecture, part discussion, heavy hands-on practice and implementation, occasional quizing to measure progress. Introduction to Data Analysis and Big Data What makes Big Data "big"? Velocity, Volume, Variety, Veracity (VVVV) Limits to traditional Data Processing Distributed Processing Statistical Analysis Types of Machine Learning Analysis Data Visualization Distributed Processing MapReduce Languages used for Data Analysis R language (crash course) Python (crash course) Approaches to Data Analysis Statistical Analysis Time Series analysis Forecasting with Correlation and Regression models Inferential Statistics (estimating) Descriptive Statistics in Big Data sets (e.g. calculating mean) Machine Learning Supervised vs unsupervised learning Classification and clustering Estimating cost of specific methods Filter Natural Language Processing Processing text Understaing meaning of the text Automatic text generation Sentiment/Topic Analysis Computer Vision Big Data infrastructure Data Storage Relational databases (SQL) MySQL Postgres Oracle Non-relational databases (NoSQL) Cassandra MongoDB Neo4js Understanding the nuances: hierarchical, object-oriented, document-oriented, graph-oriented, etc. Distributed File Systems HDFS Search Engines ElasticSearch Distributed Processing Spark Machine Learning libraries: MLlib Spark SQL Scalability Public cloud AWS, Google, Aliyun, etc. Private cloud OpenStack, Cloud Foundry, etc. Auto-scalability Choosing right solution for the problem  
octnp Octave not only for programmers 21 hours Course is dedicated for those who would like to know an alternative program to the commercial MATLAB package. The three-day training provides comprehensive information on moving around the environment and performing the OCTAVE package for data analysis and engineering calculations. The training recipients are beginners but also those who know the program and would like to systematize their knowledge and improve their skills. Knowledge of other programming languages is not required, but it will greatly facilitate the learners' acquisition of knowledge. The course will show you how to use the program in many practical examples. Introduction Simple calculations Starting Octave, Octave as a calculator, built-in functions The Octave environment Named variables, numbers and formatting, number representation and accuracy, loading and saving data  Arrays and vectors Extracting elements from a vector, vector maths Plotting graphs Improving the presentation, multiple graphs and figures, saving and printing figures Octave programming I: Script files Creating and editing a script, running and debugging scripts, Control statements If else, switch, for, while Octave programming II: Functions Matrices and vectors Matrix, the transpose operator, matrix creation functions, building composite matrices, matrices as tables, extracting bits of matrices, basic matrix functions Linear and Nonlinear Equations More graphs Putting several graphs in one window, 3D plots, changing the viewpoint, plotting surfaces, images and movies,  Eigenvectors and the Singular Value Decomposition  Complex numbers Plotting complex numbers,  Statistics and data processing  GUI Developmen
datavis1 Data Visualization 28 hours This course is intended for engineers and decision makers working in data mining and knoweldge discovery. You will learn how to create effective plots and ways to present and represent your data in a way that will appeal to the decision makers and help them to understand hidden information. Day 1: what is data visualization why it is important data visualization vs data mining human cognition HMI common pitfalls Day 2: different type of curves drill down curves categorical data plotting multi variable plots data glyph and icon representation Day 3: plotting KPIs with data R and X charts examples what if dashboards parallel axes mixing categorical data with numeric data Day 4: different hats of data visualization how can data visualization lie disguised and hidden trends a case study of student data visual queries and region selection
datavisR1 Introduction to Data Visualization with R 28 hours This course is intended for data engineers, decision makers and data analysts and will lead you to create very effective plots using R studio that appeal to decision makers and help them find out hidden information and take the right decisions   Day 1: overview of R programming introduction to data visualization scatter plots and clusters the use of noise and jitters Day 2: other type of 2D and 3D plots histograms heat charts categorical data plotting Day 3: plotting KPIs with data R and X charts examples dashboards parallel axes mixing categorical data with numeric data Day 4: different hats of data visualization disguised and hidden trends case studies saving plots and loading Excel files
neo4j Beyond the relational database: neo4j 21 hours Relational, table-based databases such as Oracle and MySQL have long been the standard for organizing and storing data. However, the growing size and fluidity of data have made it difficult for these traditional systems to efficiently execute highly complex queries on the data. Imagine replacing rows-and-columns-based data storage with object-based data storage, whereby entities (e.g., a person) could be stored as data nodes, then easily queried on the basis of their vast, multi-linear relationship with other nodes. And imagine querying these connections and their associated objects and properties using a compact syntax, up to 20 times lighter than SQL? This is what graph databases, such as neo4j offer. In this hands-on course, we will set up a live project and put into practice the skills to model, manage and access your data. We contrast and compare graph databases with SQL-based databases as well as other NoSQL databases and clarify when and where it makes sense to implement each within your infrastructure. Audience Database administrators (DBAs) Data analysts Developers System Administrators DevOps engineers Business Analysts CTOs CIOs Format of the course Heavy emphasis on hands-on practice. Most of the concepts are learned through samples, exercises and hands-on development.   Getting started with neo4j neo4j vs relational databases neo4j vs other NoSQL databases Using neo4j to solve real world problems Installing neo4j Data modeling with neo4j Mapping white-board diagrams and mind maps to neo4j Working with nodes Creating, changing and deleting nodes Defining node properties Node relationships Creating and deleting relationships Bi-directional relationships Querying your data with Cypher Querying your data based on relationships MATCH, RETURN, WHERE, REMOVE, MERGE, etc. Setting indexes and constraints Working with the REST API REST operations on nodes REST operations on relationships REST operations on indexes and constraints Accessing the core API for application development Working with NET, Java, Javascript, Python APIs Closing remarks  
kdd Knowledge Discover in Databases (KDD) 21 hours Knowledge discovery in databases (KDD) is the process of discovering useful knowledge from a collection of data. Real-life applications for this data mining technique include marketing, fraud detection, telecommunication and manufacturing. In this course, we introduce the processes involved in KDD and carry out a series of exercises to practice the implementation of those processes. Audience     Data analysts or anyone interested in learning how to interpret data to solve problems Format of the course     After a theoretical discussion of KDD, the instructor will present real-life cases which call for the application of KDD to solve a problem. Participants will prepare, select and cleanse sample data sets and use their prior knowledge about the data to propose solutions based on the results of their observations. Introduction     KDD vs data mining Establishing the application domain Establishing relevant prior knowledge Understanding the goal of the investigation Creating a target data set Data cleaning and preprocessing Data reduction and projection Choosing the data mining task Choosing the data mining algorithms Interpreting the mined patterns
OpenNN OpenNN: Implementing neural networks 14 hours OpenNN is an open-source class library written in C++  which implements neural networks, for use in machine learning. In this course we go over the principles of neural networks and use OpenNN to implement a sample application. Audience     Software developers and programmers wishing to create Deep Learning applications. Format of the course     Lecture and discussion coupled with hands-on exercises. Introduction to OpenNN, Machine Learning and Deep Learning Downloading OpenNN Working with Neural Designer     Using Neural Designer for descriptive, diagnostic, predictive and prescriptive analytics OpenNN architecture     CPU parallelization OpenNN classes     Data set, neural network, loss index, training strategy, model selection, testing analysis     Vector and matrix templates Building a neural network application     Choosing a suitable neural network     Formulating the variational problem (loss index)     Solving the reduced function optimization problem (training strategy) Working with datasets      The data matrix (columns as variables and rows as instances) Learning tasks     Function regression     Pattern recognition Compiling with QT Creator Integrating, testing and debugging your application The future of neural networks and OpenNN
druid Druid: Build a fast, real-time data analysis system 21 hours Druid is an open-source, column-oriented, distributed data store written in Java. It was designed to quickly ingest massive quantities of event data and execute low-latency OLAP queries on that data. Druid is commonly used in business intelligence applications to analyze high volumes of real-time and historical data. It is also well suited for powering fast, interactive, analytic dashboards for end-users. Druid is used by companies such as Alibaba, Airbnb, Cisco, eBay, Netflix, Paypal, and Yahoo. In this course we explore some of the limitations of data warehouse solutions and discuss how Druid can compliment those technologies to form a flexible and scalable streaming analytics stack. We walk through many examples, offering participants the chance to implement and test Druid-based solutions in a lab environment. Audience     Application developers     Software engineers     Technical consultants     DevOps professionals     Architecture engineers Format of the course     Part lecture, part discussion, heavy hands-on practice, occasional tests to gauge understanding Introduction Installing and starting Druid Druid architecture and design Real-time ingestion of event data Sharding and indexing Loading data Querying data Visualizing data Running a distributed cluster Druid + Apache Hive Druid + Apache Kafka Druid + others Troubleshooting Administrative tasks
nlpwithr Natural Language Processing (NLP) with R 21 hours It is estimated that unstructured data accounts for more than 90 percent of all data, much of it in the form of text. Blog posts, tweets, social media, and other digital publications continuously add to this growing body of data. This course centers around extracting insights and meaning from this data. Utilizing the R Language and Natural Language Processing (NLP) libraries, we combine concepts and techniques from computer science, artificial intelligence, and computational linguistics to algorithmically understand the meaning behind text data. Data samples are available in various languages per customer requirements. By the end of this training participants will be able to prepare data sets (large and small) from disparate sources, then apply the right algorithms to analyze and report on its significance. Audience     Linguists and programmers Format of the course     Part lecture, part discussion, heavy hands-on practice, occasional tests to gauge understanding Introduction     NLP and R vs Python Installing and configuring R Studio Installing R packages related to Natural Language Processing (NLP). An overview of R’s text manipulation capabilities Getting started with an NLP project in R Reading and importing data files into R Text manipulation with R Document clustering in R Parts of speech tagging in R Sentence parsing in R Working with regular expressions in R Named-entity recognition in R Topic modeling in R Text classification in R Working with very large data sets Visualizing your results Optimization Integrating R with other languages (Java, Python, etc.) Closing remarks

Upcoming Courses

CourseCourse DateCourse Price [Remote / Classroom]
Knowledge Discover in Databases (KDD) - DubaiTue, 2017-08-15 09:303900USD / 6450USD

Other regions

Weekend Data Visualization courses, Evening Data Visualization training, Data Visualization boot camp, Data Visualization instructor-led , Data Visualization on-site, Evening Data Visualization courses, Data Visualization coaching, Data Visualization classes, Data Visualization training courses, Data Visualization instructor,Weekend Data Visualization training, Data Visualization one on one training , Data Visualization trainer

Course Discounts

Course Venue Course Date Course Price [Remote / Classroom]
Statistical Thinking for Decision Makers Dubai Sun, 2017-07-09 09:30 1287USD / 2537USD
Programming with Big Data in R Jeddah Mon, 2017-07-10 09:30 3510USD / 7610USD
Data Mining with R Jeddah Tue, 2017-07-18 09:30 2340USD / 5340USD
GlassFish Administration Dubai Sun, 2017-08-13 09:30 3510USD / 6060USD
Introduction to R Dubai Tue, 2017-08-29 09:30 3510USD / 6060USD
Data Mining Dubai Mon, 2017-10-23 09:30 4725USD / 7275USD
Cloud Computing Overview Dubai Thu, 2017-11-09 09:30 1170USD / 2420USD

Course Discounts Newsletter

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

Some of our clients